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Abstract

Active vibration isolation systems are less commonly used than passive systems due to their associated cost
and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability
and higher performance of fully active systems for a fraction of the power consumption. Various semi-active
control algorithms have been suggested in the past, many of which are of the “on—off” variety. This paper
studies the vibration isolation characteristics of four established semi-active damping control strategies,
which are based on skyhook control and balance control. A semi-active damper is incorporated into a single-
degree-of-freedom (s.d.o.f.) system model subject to base excitation. Its performance is evaluated in terms of
the root-mean-square (r.m.s.) acceleration transmissibility, and is compared with those of a passive damper
and an ideal skyhook damper. The results show that the semi-active system always provides better isolation
at higher frequencies than a conventional passively damped system.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

A passive vibration isolation system is the simplest way to protect a dynamical system from
vibration inputs. There is a trade-off with this system, however, between the control of vibration
at resonance, when a highly damped isolator is desirable, and the higher frequency isolation
performance, when low damping is required [1]. Active isolation systems can be used to overcome
this limitation [2]. They generally fall into three categories: adaptive-passive, semi-active and fully
active [3]. Fully active isolation systems apply dynamic forces at the same frequency as the
primary excitation and can provide superior performance, but the system becomes more complex
and there are a number of issues that need to be addressed. These include the selection of
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actuators and sensors, weight constraints, power requirements, stability, robustness, closed-loop
performance and potential failure [3]. Adaptive-passive and semi-active vibration isolation involve
changing the system properties, such as damping and stiffness as a function of time. In an
adaptive-passive system, the properties are changed relatively slowly, but in a semi-active system,
the properties are changed within a cycle of vibration. Adaptive-passive control has been used
successfully in isolating harmonic rather than random disturbances [3], and semi-active control
has been proposed as an alternative to fully active control for some applications [4,5].

The advantages of semi-active dampers over traditional passive dampers have been addressed
in many studies [4,6—11]. For example, Karnopp et al. [4] studied the performance of a skyhook
controlled semi-active damper, and compared the performance with that of a conventional passive
damper [4,12]. The name “skyhook’ is derived from the fact that it is a passive damper hooked to
an imaginary inertial reference point. Semi-active control strategies can maintain the reliability of
passive devices using a very small amount of energy, yet provide the versatility, adaptability and
higher performance of fully active systems. The particular benefits of semi-active methods are that
(as with adaptive-passive methods) the parameters of the system can be changed with time to
retain optimal performance and (unlike adaptive-passive methods) higher levels of optimisation
can be achieved due to the rapid time-variation achievable.

There exists a large number of control strategies for semi-active damping control in the
literature [4,8,12,13]. Karnopp studied the performance of skyhook damping control [4,12].
Alanoly and Sankar studied the performance of balance control for vibration and shock isolation
[8,13]. Carter studied the effectiveness of semi-active damping for vibration control of the car
suspension [14]. Many of these control strategies are of the ‘“‘on—off” variety. Although
complicated control strategies may offer some advantages, significant performance gains can still
be realized with more basic control strategies. The aim of this paper is to compare some of these
basic control strategies in the vibration isolation of harmonic disturbances. Continuous skyhook
control [4,15], on—off skyhook control [16], on—off balance control [6] and continuous balance
control [8] are investigated and are compared with an adaptive-passive damping strategy.
Numerical simulations are carried out on a single-degree-of-freedom (s.d.o.f.) system and results
are presented to evaluate the suitability of these basic algorithms for vibration isolation of
harmonic disturbances. The performance is evaluated in terms of the root-mean-square (r.m.s.)
acceleration of the suspended mass, and compared with that of conventional and skyhook passive
dampers.

2. Description of the control stategies

A s.d.o.f. system with a semi-active damper installed in place of the conventional passive
damper subject to base excitation is shown schematically in Fig. 1. The vibration of the base and
the mass are measured and fed into a controller, which tunes the damper coefficient such that the
damping force, which is proportional to the relative velocity, X — Xy, can be varied as a function of
time. The controller unit in Fig. 1 can represent any control strategy.

Semi-active dampers may be of the on—off type or of the continuously variable type. A damper
of the first type is switched between “on” and “off”” damping states in accordance with a suitable
control algorithm. In its “on” state, the damping coefficient is relatively high, and in its “off”



Y. Liu et al. | Journal of Sound and Vibration 280 (2005) 21-39 23
state, it is relatively low. Ideally the off-state damping should be zero, but in practical situations
this is not possible. A continuously variable semi-active damper is also switched between “on”
and “off” states. However, in its ““on’ state, the damping coefficient and corresponding damping
force are varied. The concept of semi-active damping is illustrated in Fig. 2, which shows the
force—velocity characteristics for an on—off and a continuously variable damper. The shaded part
of the graph in Fig. 2(b) represents the range of achievable damping coefficients for a
continuously variable damper.

This section describes four semi-active damping control strategies which are on—off and
continuously variable implementations of skyhook and balance control. In Section 4 these
methods are benchmarked against passive control and a simple adaptive-passive algorithm which
is described next.

2.1. Adaptive-passive damping control

The first control algorithm considered is an adaptive-passive method. A passive system can only
provide isolation in the frequency range w/w, > \/5, where w is the excitation frequency and w, is
the natural frequency. Increasing the damping coefficient in the frequency range w/w, < \/E will
reduce the resonance peak, while the isolation performance in the frequency range w/w, > \/5
will be degraded. Thus for harmonic vibration isolation the damping coefficient should be large
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Fig. 1. Schematic of a s.d.o.f. system with a semi-active damper.
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Fig. 2. Semi-active damper concepts (a) on—off damper; (b) continuously variable damper (the shaded part in (b)
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when o/w, < \/5, and as small as possible when w/w,, > \/5 The following control algorithm will
ensure these conditions:

Cmax, Fm.s(X)=r.m.s.(Xp),

. { () (¥0) M

Cmin, T-M.S5.(X)<r.m.s.(Xo).

The control algorithm uses the r.m.s. values, calculated over a time period much longer than the
period of excitation, as the condition function to adjust the damping. When the r.m.s. value of the
acceleration response X is greater than the r.m.s. value of the base acceleration X, amplification
occurs and the damper is switched to its maximum value. Otherwise, the damper is switched off so
that minimal damping is present in the system. For this adaptive-passive control algorithm, the
damper works in a bi-state (on—off) manner and does not require the damper to switch rapidly. It
is potentially well suited to vibration isolation of rotating machines. The disadvantage of this
control algorithm is that it is only applicable to harmonic vibration isolation.

2.2. Semi-active damping control

This section considers four semi-active control algorithms, namely continuous and on—off
skyhook control, and continuous and on—off balance control.

2.2.1. Continuous skyhook control
Considering a s.d.o.f. system with a skyhook damper, the damping force can be written as

Fsky = Cskyx, (2)

where Fy, is the skyhook damping force, x is the velocity response of the mass, and cg,
is the damping coefficient of the skyhook damper. The intention is to replicate such a skyhook
damping force with a semi-active damper mounted conventionally between the base and the
mass. However, since a passive damper can only absorb vibration energy, the product of the
semi-active damping force, Fy,, and the relative velocity, x — Xy, across the damper must satisfy
the inequality

Fsa(x - XO) =0. (3)

The desired force is ¢y, X, but the semi-active damper can only generate this force when X and
X — Xo have the same sign. When x and x — x( are of opposite sign, the semi-active damper can
only provide a force opposite to the desired force. In this situation, it is better to supply no force
at all. The continuous semi-active skyhook control algorithm is thus given by

Foo— Cskyxa X(X - X())ZO,
“ o, X(x — %) <0.

(4)

The switching of the device is controlled by the term x(x — %), which is called the condition
function. When the damper is on, the damping force can be written as

Fsu = Csa(x - fC()), (5)
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where ¢y, 1s the semi-active damping coefficient. The value that ¢y, must take to emulate a skyhook
damper may be found by setting Eq. (5) equal to Eq. (4), giving

Cskyx ce .
2 X(x — X%0)=0,
(o= G-y T (6)

0, $(x — %0) <O.

One can see from Eq. (6) that when the relative velocity is very small, the required damping
coefficient increases abruptly and tends to infinity. However, in practice the semi-active damper
coefficient is limited by the physical parameters of the conventional damper, which means that
there is both an upper bound, ¢y, and a lower bound, cy,. The damping coefficient in Eq. (6)
can thus be rewritten as

. CskyX e
max |:Cminz min |: 5 Sy T\ Cmax] :| 5 X(X - xO) = Oa
(% — Xo)

()

Csa =

Cmin, X(X - fCo)<0.

2.2.2. On—off skyhook control

The control algorithm given in Eq. (7) requires the damper coefficient to be continuously
variable. To simplify the operation an on—off scheme has been proposed [16]. The on—off damper
acts as a conventional passive damper during the vibration attenuation portion of the vibration
cycle, but a zero damping coefficient is assumed when the damping force generated by the semi-
active damper is in the opposite direction to the ideal skyhook damping force. For on—off control,
the damping force is governed by the control algorithm

b J et = o), 3G = )20,
“ o0, x(x — X0) <0,

()

where ¢,, is the on-state damping constant of the on—off damper. In practice, a zero damping
coefficient is impossible when the damper is switched off. Therefore, the damping coefficient is
switched between a high value and a low value, and the control algorithm in Eq. (8) can be
rewritten as

©)

Cmax, X(X - Xo)ZO,
Coa =

Cmin, X(X — X0) <0,

where ¢pax and c¢mj, are the maximum and minimum coefficients of the on—off damper,
respectively. The on-state damping ¢pax should be much greater than the off-state damping ¢pin,
which should be as small as possible.

Both the continuous skyhook control and on—off skyhook control algorithms attempt to
produce the effect of skyhook damping from a conventionally mounted damper. However, there
are differences between them, which can be found by interpreting the damping force in terms of
the phase and amplitude. The continuous skyhook control attempts to provide the same
amplitude and phase in its on state as those of a skyhook damper. However, due to the practical
limitations of physical systems it can only provide the same amplitude during part of the on state
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period. In addition, there are non-zero off-state damping effects. Conversely, the on—off skyhook
control can only ensure that the semi-active damping force has the same sign as the desired
skyhook damping force, and does not attempt to replicate the magnitude of the skyhook damping
force. It has been shown in Ref. [17] that on—off and continuously variable skyhook control can
give comparable performance.

2.2.3. On—off balance control

Balance control is based on an alternative physical criterion to skyhook control, and is so-called
because it attempts to cancel the spring force in part by the damping force. It is sometimes termed
“relative control” since the variables in the condition function are the relative displacement and
the relative velocity between the mass and the base [18]. Both on—off and continuous versions of
balance control are discussed here.

Considering a passive s.d.o.f. system subject to base excitation, the acceleration response of the
suspended mass due to base excitation can be expressed as

X=- %(Fk + Fy), (10)
where F; and F,; are the spring and damping forces, respectively, which are given by
F, = k(x — xo) (11)
and
Fy = c(x — xp), (12)

where k and c¢ are the constant spring rate and damping coefficients, respectively. The amplitude
of the acceleration of the mass due to harmonic base excitation can be expressed in terms of the
spring and damping forces [6]

T
fo<t<ty+—,
|).€|_|Fk|+|1"}/| 0 0y (13)
N lo+~<t<t +3T
0+3 0o+
Zr<t<l —|—T
o Fl = |Fal) 4 0Ty
[¥] = ——— (14)

3t
m o+ <t<to+r,

where 7, is the time point at which ¥ = 0 and is increasing, and 7 is the period of vibration. It is
evident from Eq. (13) that the damping force tends to increase the acceleration of the mass during
two quarters of a cycle. In the remaining part of the cycle the damping force tends to decelerate
the mass, which can be seen by Eq. (14). Poor vibration isolation performance of heavily damped
passive systems is attributed to this phenomenon, where the magnitude of the damping force is
dominant at high frequencies.

The damping force will increase the acceleration of the mass whenever forces due to the spring
and the damper have the same sign, or equivalently when the relative velocity and relative
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displacement have the same sign. A control algorithm to ensure that this does not occur is [6]

Con(X — X0), (x — x0)(x — X0) <0,
P on(( 0, ( o)(. .0) (15)
0, (x = x0)(X — Xo) > 0,
where ¢,, is the on-state damping constant of the on—off damper. The corresponding semi-active
damping coefficient considering non-zero off-state damping is given by

{ Cmax> (X - XO)(X - x0)<0;
Csa =

Cmin, (X — Xp)(X — X¢) >0,

(16)

where ¢pax and cpin are the maximum and minimum damping coefficients of the on—off semi-
active damper.

2.2.4. Continuous balance control

The control algorithm given in Egs. (15) and (16) has the potential for improvement. During the
on state, the instantancous damping force is seldom exactly equal in magnitude to the
instantaneous spring force. Consequently, the surplus force will still accelerate the mass. In Ref.
[8], a continuously variable control algorithm has been proposed, which can be considered as a
further development of the control algorithm given in Eq. (15). The damping coefficient can be
varied continuously, depending on the relative displacement and the relative velocity, such that the
spring and damper forces balance exactly during the “on” part of the cycle. The required force is

o —k(x — xo), (x — x0)(x — X0) <0,
“ o, (x — x0)(% — %) > 0.

(17)

In this formulation, the damper is attempting to behave like a spring with a negative stiffness
coefficient during the on part, where the damping force is adjusted to equal the magnitude of the
spring force in order to produce zero acceleration. The semi-active damping coefficient required for
this control algorithm can be written as

—k(x —
.(X—.XO): (x - XO)(X - XO)SO:
Csq = ()C - xO) (18)
0, (x = x0)(X — Xo) > 0.
It can be seen from Eq. (18) that the damping coefficient tends to infinity as X — Xy — 0, which
cannot be implemented in practice. Similarly to Eq. (7), the damper constant c,, saturates at the
upper and lower bounds imposed by the physical parameters of the damper. Considering practical
constraints, the damping coefficient can be rewritten as
[ . [—k(x — Xp)
max | Cmin, MIN | ———————
(% — Xo)

Cmin; (x — x0)(x — X9) > 0.

P Cmax:| :| 5 (X - XO)(X - XO) < 0:

Csa =

(19)

Both the on—off and continuously variable balance control algorithms set the damping force to
cancel the spring force to some extent, whenever the damping force and the spring force have the
opposite sign. Since the on—off balance control can only produce a damping force proportional to
the relative velocity across the damper in its on state, it cannot ensure the damping force is exactly
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equal to the spring force. As can be seen by Eqgs. (16) and (19), for the on—off balance control the
spring force can be partly cancelled or even over-cancelled depending on values of ¢y, ¢max and the
frequency. For the continuous balance control, the spring force can be partly or totally cancelled.

Table 1 summarizes the semi-active damping coefficients required to achieve the desired
damping force for each of the four control algorithms discussed in this section. Also shown are the
practically achievable damping values given that the damping coefficient of the semi-active
damper must lie in the range [¢min, Cmax]- For the continuous skyhook control and continuous
balance control algorithms, the denominator in the expressions of the damping equation
introduces a high degree of non-linearity into the system. This raises two issues that need to be
addressed when considering implementation of the semi-active dampers: chatter and jerk. These
are studied in the next section.

3. Controller development

This section describes the numerical problems met when simulating the response of a system
with a semi-active damper: chatter and jerk. Chatter refers to the phenomenon whereby the
system switches rapidly between different states, and jerk is defined as a sharp change in the
acceleration response of the system. There is potential for chatter and jerk to occur in semi-active
systems since the damping coefficient switches between on and off states. The chatter problems
that occur with on—off and continuous skyhook dampers are addressed and an ‘““anti-jerk’ control
algorithm is proposed to avoid the sharp change in the acceleration response.

3.1. Chatter of the semi-active skyhook system

Semi-active skyhook systems can chatter between the on and off states, and Fig. 3 shows typical
time histories of the damping and spring forces when chatter occurs. Since a semi-active damper
system 1s energetically passive, the chatter depends totally on the instantanecous states of the
system. Donald and Mehrnaz studied the occurrence of chatter for on—off skyhook control and
suggested a modified logic to cure it [19]. For the semi-active skyhook control, switches due to
changes in the sign of the mass velocity, X, are defined as “x switches”, while those due to changes
in the sign of x — X, are called “x — X switches”. Recalling the form of damping forces for the on—
off and continuous skyhook dampers in Egs. (4) and (8), it is noted that only x switches are
important with respect to the potential of chatter for the on—off skyhook control and x — X
switches are important for the continuous skyhook control. This is because for the on—off skyhook
control, x switches can be associated with large relative velocity, x — Xy, and thus large damping
forces, while X — X switches are always associated with small damping forces. Conversely, for
continuous skyhook control, X — X, switches can be associated with large damping forces.

Also, chatter can only occur if the damper and spring force are in opposition, and if the on-state
damping force is of larger magnitude than the instantaneous spring force. If the damping force is
not greater than the spring force, then the damper does not change the direction of the
acceleration and does not initiate chatter [19].

The three conditions for chatter to occur are summarized in Table 2. If these conditions are
met, chatter will be initiated and continue until an x — X, (on—off skyhook control) or an x



Table 1

Damping characteristics of some semi-active dampers

Damper type

Original control algorithm

Semi-active damping required

Semi-active damping in practice

Continuous skyhook

On-off skyhook

On-off balance

Continuous balance

Adaptive-passive damping

Fia

Fy,

Fy,

Fy,

0, S —

X0)<0

B {qk,,)'c, X(X — %0)=0

:{%u—nx

>

>

:{mu—mx

_ | —k(x = x),
=10,

_ J con(x — X0),
=10

X(X — %0)=0
$(X — %0) <0

(v = x0)(X — %) <0
(x = xp)(X* — X0) >0

(¥ = X)(¥ — %) <0
(x — xp)(* — X0) >0

r.m.s.(X) =r.m.s.(%o)
r.m.s.(X) <r.m.s.(%o)

X(X — %0)=0

Csa =
$(X — X0) <0
¢ Cony  X(X — X0) =0
L0, X(X — X0)<0
e = § Con> (o = x)(% — %) <0
L0, (x = xo)(X — Xo) >0
TR0 ) <0
Csa = X — X0
0, (x = xo)(¥ — %) > 0
S con, rms(X)=r.m.s.(Xo)
%=1 0, ram.s.(¥) <r.m.s.(%)

| ColyX e
max [cmin,mm L oo Cma | |- X(X — %0)=0
— %

Cmin, X(X — X0)<0

Cmax,  X(X — X0)=0
Cmin,  X(X — X0)<0

Cmaxs (X — X0)(X — %) <0
Cmin, (¥ = x0)(¥ — %) > 0

X — X
Cmin (x — xp)(X — X0) >0

Cmax,  Fm.s.(X)=r.m.s.(¥o)

Coa = Cmin,  F-m.s.(X)<r.m.s.(¥o)

o { Max | ¢pin, min [71(0 —x) cnm” (x — xo)(x — X0)<0
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Fig. 3. Typical time history of spring and damper forces during chatter.

Table 2

Conditions for chatter of semi-active skyhook damper to occur

(1) An x switch (on—off skyhook control) or an x — X (continuous skyhook control) switch has taken place
(2) The damper force, Fy, if on, is of opposite sign to the spring force

3) The damper force is of larger amplitude than the instantaneous spring force

(continuous skyhook control) switch takes place; or either condition (2) or (3) in Table 2 is not
met. Several attempts have been proposed to eliminate the chatter problem. For example,
Karnopp et al. use the “lock up” force [4,15], and Tudoruse uses a fuzzy logic controller to reduce
chatter [18]. However, practical semi-active devices will have some time delays and the damping
properties cannot be changed instantaneously. The chatter and jerk problems may be suppressed
to some degree by the time delays. A first order time delay can be included in the control force to
study the effects of time delay on suppressing chatter and jerk [20]. A modified logic is used here to
eliminate the chatter, which is given in the flowchart in Fig. 4. This modified logic is used in the
numerical simulations in Section 4.

3.2. Anti-jerk control

The damping force exhibits discontinuities at the time of switching. Thus, a significant change
in acceleration may be experienced by the suspended mass, which is undesirable. Figs. 5(a)—(d)
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Calculate the system
response h ] 4

The condition function
has changed sign?

X (on-off skyhook control)
or X — X, (continuous skyhook
control) has changed sign?

Apply semi-active
damping

A A

The damping force or spring
force has the same sign?

Don’'t switch, usethe
previous damping
coefficient

A

The damping force is smaller than Yes

the spring force in magnitude?

No

Fig. 4. Flow chart of the modified logic for cure of chatter in semi-active skyhook damping control.

show three-dimensional control surface plots of the damping force F;, as a function of the
variables in the condition function defined by Egs. (4), (8), (15) and (17). Surface discontinuities
are present in the control surfaces at x — Xy = 0 in Fig. 5(a), xo = 0 in Fig. 5(b), x — xo = 0 in Fig.
5(c), and x — xo = 0 in Fig. 5(d). All these surface discontinuities may lead to jerk, and some may
cause chatter as described in Section 3.1.

To reduce this, a shaping function can be introduced to smooth the introduction of a damping
force [21]. The shaping function can be written as a function of the variables defining the
condition function, i.e., F(x — xg, X, X — X9), and is chosen to modify the overall shape of the
three-dimensional control surface to remove discontinuities. When choosing the shaping function,
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sa

@ x-% 1 X (b)

© x=x b X% (d) X%, X =%,

Fig. 5. Three-dimensional control surface plot of the semi-active damper force as a function of the variables defining
the condition function: (a) continuously variable skyhook control; (b) on—off skyhook control; (c) on—off balance
control; (d) continuous balance control.

the following guidelines must be observed: (1) F(x — xp, X, X — Xp) is a continuous function, and
both F(x — xo,X, X — Xo) and the ‘“‘shaped” control surface both include continuous first
derivatives for all values of x — xy, X and X — Xq¢; (2) F(x — xp, X, X — Xp) is equal to 0 whenever
a variable in the condition function will result in the occurrence of surface discontinuities. One can
see that the shaping function for a particular semi-active control algorithm is not unique.

For the continuous skyhook control algorithm, the shaping function can be simply chosen as

F(X, x — Xo) = |X — Xol. (20)
With this shaping function, the control strategy becomes

G- |% — Xo| - %, x(x — X0)=0,
Fy = e . (21)
0, X(x — X%0) <0,
where G is a gain factor. After some manipulation and taking into consideration the constraints of
practical implementation, the following algorithm can be used to implement the anti-jerk
continuous skyhook control

(22)

max[cmin, mln[G|x|5 Cmax]]a x(x - X()) > O,
Csa = . .
Cmins X(x — x%9)<0.
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The shaping function for continuous balance control can be chosen as
F(X—Xo,fC—fCo) = |f€—f€o|. (23)
Correspondingly, the damping force is

P { =Gl =l (=0l (= x0)(E —) <0, o4
Cmin(X — X)), (x — x0)(X — Xg) > 0.

Following the same procedure as for continuous skyhook control, the damping coefficient can be
written as

(= { max|Cmin, Min[G|x — Xol, cmax]], (¥ — x0)(Xx — X0) <0, 25)

Cmin, (x — x0)(x — X¢) > 0.

Fig. 6 shows the control surface plot for the control algorithms defined by Eqs. (21) and (24) with
anti-jerk modification. It can be seen that surface discontinuities are avoided for both of the two
continuous control strategies, thus jerk can be reduced.

On-—off skyhook control and on—off balance control are not amenable to anti-jerk control since
only two states of damping are possible. Consequently, jerk might occur, but since they are
relatively simple, they are implemented numerically and studied here. Table 3 summarizes the four
control algorithms used to study the vibration isolation performance of semi-active dampers,
which are labelled for convenience as SA-1 to SA-4. Also listed is the adaptive-passive damping
algorithm described in Section 2.1, which works in a bi-state manner. It works as a common
passive damper, which can be switched from one value to the other. There is no jerk associated
with this control algorithm since the switch time can be chosen to occur when the damping force
equals zero. This algorithm is subsequently labelled as AP.

4. Numerical simulations

The equation of motion describing a base excited s.d.o.f. system can be written as
m3(1) + c(x(1) — Xo(1)) + k(x(2) — xo(1)) = 0, (26)

@  x-% % (®)

Fig. 6. Three-dimensional control surface plot of the semi-active damper force as a function of the variables defining
the condition function with anti-jerk modification: (a) continuously skyhook control; (b) continuous balance control.
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Table 3
Semi-active control algorithms implemented numerically
Semi-active Damping Condition function
damper type coefficient
SA-1 Continuous skyhook On state max|Cmin, Min[G|x|, ¢max]] X(x — X0)=0
control with anti-jerk
modification
Off state Cmin X(x — X0)<0
SA-2 On—off skyhook control On state Cmax X(X — X0)=0
Off state Cmin X(x — X0)<0
SA-3 Continuous balance On state max|¢min, min[G|x — (x — x0)(x — X0)<0
control with anti-jerk Xol, Cmax]]
modification
Off state Cmin (x — xp)(x — X0) >0
SA-4 On-—off balance control On state Cimax (x — x0)(X — X0)<0
Off state Cmin (x — xp)(x — X0) >0
AP Adaptive-passive control On state Crmax r.m.s.(X) =r.m.s.(Xy)
Off state Cmin r.m.s.(X) <r.m.s.(Xo)

where ¢ is the damping parameter which for the semi-active control algorithms considered in this
paper, is given in Table 3. Eq. (26) is solved for harmonic excitation to establish the vibration
isolation performance. The response of the system can be obtained by directly integrating
Eq. (26). Simulations were carried out in MATLAB and SIMULINK using a fourth order
Runge—Kutta integration scheme. The parameters of the system are chosen as m = 1 kg, k =
47> N/m and ¢y = 0.

The acceleration response will have discontinuities since the semi-active system is non-linear
with step changes in damping force, so previous researchers have used displacement
transmissibility to characterize the isolator performance [6,8]. The characterization in terms of
acceleration would be more appropriate since the human body or a suspended mass is sensitive to
inertial forces. In this study, the ratio of the r.m.s. of the response acceleration to the r.m.s. of the
input acceleration is used as a performance index to evaluate vibration isolation performance,
which is defined by

TR — r.m.s.(X)

) (27)

When simulating continuously variable control in Egs. (22) and (25), a gain factor G is chosen
such that the maximum damping ratio is equal to that of the on—off strategies.

4.1. Skyhook control

This section presents the results of the simulations using the continuously variable and on—off
skyhook control (SA-1 and SA-2).
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Fig. 7. Steady state response of continuous skyhook semi-active s.d.o.f. system (a) w/w, = 0.5; (b) o/w, =1; (¢)
w/w, = 3.

Figs. 7(a)—(c) show the time histories of the damping force, the condition function and the
acceleration response with G = 185, which gives the maximum damping ratio to be unity. The
results correspond to frequency ratios of w/w, = 0.5, w/w, = 1.0, and w/w, = 3.0. The system
was allowed to run until steady state was reached, but only the last few cycles are plotted in the
figures. Note that the damping forces in the figure are not to the same scale. The time histories of
the damping force show clearly the damping being switched on and off. The acceleration plots
show the somewhat non-harmonic mass acceleration due to the non-harmonic force generated by
the semi-active damper.

Figs. 8(a)—(c) show the time histories of the damping force, the condition function and the
acceleration responses for the SA-2 control algorithm with the on-state damping ratio (., = 1.
Again, frequency ratios of 0.5, 1 and 3 have been chosen. The acceleration response of the
on—off damper consistently reveals four jerks during each vibration cycle irrespective of the
excitation frequency. The four jerks occur at the instances at which the damper is switched
on and off. With the increase of excitation frequency, the duration of the off cycle of SA-2 system
increases.

4.2. Balance control

This section presents the results of the simulations using the continuous variable and on—off
balance control (SA-3 and SA-4) semi-active control algorithms.

Figs. 9(a)—(c) show the steady state response of an SA-3 system at three different frequencies for
a gain of G = 140, which gives the maximum damping ratio to be unity. The results correspond to
frequency ratios of w/w, = 0.5, w/w, = 1.0, and w/w, = 3.0. One can see that whenever the
relative displacement and the relative velocity bear different signs, the semi-active damper is
switched on to partially cancel the spring force.
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Fig. 8. Steady state response of on-off skyhook semi-active s.d.o.f. system at (a) w/w, =0.5; (b) w/w, =1; (¢)
w/w, = 3.
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Fig. 9. Steady state response of continuous balance semi-active s.d.o.f. system at (a) w/w, = 0.5; (b) w/w, = 1; (¢)
w/w, =3.

The steady state response of the SA-4 system with {,,,, = 1.0 is shown in Figs. 10(a)—(c) for
three excitation frequencies. It can be seen that the damper assumes a zero damping force
whenever the spring and the damping forces bear the same sign. The acceleration response
features four jerks associated with the switching of the damper. It can be seen from Fig. 10(c) that
at higher frequencies, the SA-4 system changes from its equilibrium position. In the extreme case
shown, the relative displacement does not change sign, such that the switch of the semi-active
damper is determined solely by the sign of relative velocity.
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4.3. Comparison of semi-active and passive dampers

To evaluate the suitability of these semi-active control algorithms for vibration isolation of
harmonic disturbances, the r.m.s. acceleration transmissibility of the s.d.o.f. system with a semi-
active damper is compared with that of a passive damper and an ideal skyhook damper in the
frequency domain. The frequency response is obtained by carrying out the simulations at discrete
excitation frequencies.

Figs. 11(a) and (b) are a comparison of the r.m.s. acceleration transmissibility defined by
Eq. (27), of the passive, skyhook and semi-active dampers subject to harmonic inputs. The
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Fig. 10. Steady state response of on—off semi-active s.d.o.f. system at (a) w/w, = 0.5; (b) w/w, = 1; (¢c) w/w, = 3.
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Fig. 11. Comparison of the transmissibility of a s.d.o.f. system with semi-active dampers: (a) small damping
(Cmax = 0.25); (b) moderate damping ({.x = 0.50).
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damping ratios of the passive damper and the skyhook damper are chosen to be 0.25 and 0.5 in
the simulations. The on-state damping ratios of the semi-active damper (., are chosen to be
equal to 0.25 and 0.5, respectively, and the off-state damping is {,;, = 0.

It can be established from the results that

1. The semi-active system always provides better isolation at higher frequencies than a
conventional passive damped system. Fig. 11(b) shows that the difference between the two
systems becomes more obvious as the damping ratio increases.

2. The compromise between resonance control and isolation that is inherent in a conventional
passive system does not exist for the semi-active systems. The reduction in the resonance peak
does not necessarily occur at the cost of reduced isolation at high frequencies. In fact, with a
sufficiently large damping ratio, one can eliminate the resonance peak and actually achieve
better isolation across the whole frequency spectrum. This is particularly useful for sensitive
machinery that cannot tolerate any overshoot in power-up or power-down, and yet must have
good isolation during normal operation. With the increase of damping of a semi-active damper,
both the high-frequency isolation and resonance response are improved. However, this also
leads to deterioration at very low frequencies due to the abrupt discontinuities in the damping
force.

3. The skyhook damper system always provides the best performance but it is only an ideal case.
Adaptive-passive damping control is possibly the simplest way to implement a control
algorithm for harmonic vibration isolation, but is not applicable to random excitations. SA-1
and SA-2 provide similar performance but SA-2 is much simpler to implement. SA-3 and SA-4
systems can provide superior isolation performance at higher frequencies at the cost of a large
resonance peak.

5. Conclusions

A model of a s.d.o.f. system subject to harmonic base excitation has been used to study the
vibration isolation performance of four semi-active dampers. Five control algorithms have been
studied, which are based on skyhook control, balance control, and adaptive damping control. The
chatter and jerk problems that arise when simulating semi-active dampers numerically have been
investigated and anti-jerk semi-active control algorithms have been suggested. With the suggested
modifications, discontinuities of the damping force for the two continuous variable semi-active
dampers can be avoided, thus jerk can be significantly reduced. Using a s.d.o.f. model, the
vibration isolation performance of the five control algorithms has been analyzed and compared
with passive and skyhook systems. It can be concluded from the results that the semi-active
systems considered can always provide better isolation at higher frequencies than a conventional
passive damped system. As the damping ratio increases, the difference between the two systems
becomes more obvious. The skyhook damper system always provides the best performance but it
is only an ideal case. The skyhook control systems provide similar performance but the on—off
skyhook system is much simpler than the continuously variable system. The SA-3 and SA-4
systems are good at reducing acceleration response at higher frequencies. The adaptive-passive
damper is the simplest control algorithm to achieve a better performance over conventional
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passive systems. However, there is a narrow frequency range just above the resonance frequency
where semi-active dampers provide better performance than adaptive-passive systems.
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